Worldwide your competent partner for Sealing Technology


## A 190X 0xygen

100 \% PTFE Fiber with special PTFE Dispersion

## Characteristics

- In applications with high pressure or vacuum, die formed bullrings of S4 (no food approval) are recommended
- Low coefficient of friction and displays low stem/spindle frictions
- Long lifetime
- No ageing
- Minimized maintenance and readjustments



## Main application

- Valves
- Fittings
- Gate valves
- Flaps
- Plunger
- Door and lid seals


## Suitable for

- Pulp and paper industry
- Chemical industry
- Pharmaceutical industry
- Food industry
-Food industry


## Form of delivery

This packing can be manufactured from 3 to 40 mm square as well as in intermediate, inch sizes and special measurements.
$03-09 \mathrm{~mm}$ on 1 kg spool
$10-15 \mathrm{~mm}$ on $2,5 \mathrm{~kg}$ spool
$16-25 \mathrm{~mm}$ on 5 kg spool
Special length, pre-cut or die formed rings on request.

## Approvals

- BAM oxygen gaseous and liquid $60^{\circ} \mathrm{C} / 30$ bar
- FDA conformity
- EC 1935:2004 in accordance with EU 10/2011


FDA

| 1 kg of packing of the following cross-sections is equivalent to displayed meter lengths: |  |  |  |
| :---: | :---: | :---: | :---: |
| Size mm | Meter | Sizemm | Meter |
| 3.2 [1/8"] | 52.8 | 12 | 3.8 |
| 4 | 33.8 | 12.7 [1/2"] |  |
| 5 [3/16"] | 21.6 | 14 [9/16"] | 2.8 |
| 6 | 15.0 | 15 | 2.4 |
| 6.35 [1/4"] | ] 13.4 | 16 [5/8"] | 2.1 |
| 7 | 11.0 | 18 | 1.7 |
| 8 [5/16"] | 8.4 | 19 [3/4"] | 1.5 |
| 9.5 [3/8"] | 6.0 | 20 | 1.4 |
| 10 | 5.4 | 22 [7/8"] | 1.1 |
| 11 [7/16"] | 4.5 | 25 [1"] | 0.9 |

1 kg of packing of the following cross-sections is equivalent to Sisplayed meterlengiz

All technical information and advice is based on our experience and will be given most conscientiously but without any liability.
Indication and figures are for guidance only and need to be examined by the user. All sizes are subject to manufacturing tolerances. We reserve the right to modify specifications at any time.
Please note that the technical values cannot be used all at the same time in their maximum values.

